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We discuss conditions for the absence of spontaneous breakdown of continuous 
symmetries in quantum lattice systems at T=0.  Our analysis is based on 
Pitaevskii and Stringari's idea that the uncertainty relation can be employed to 
show quantum fluctuations. For one-dimensional systems, it is shown that the 
ground state is invariant under a continuous transformation if a certain uniform 
susceptibility is finite. For the two- and three-dimensional systems, it is shown 
that truncated correlation functions cannot decay any more rapidly than 
[r[-a+t whenever the continuous symmetry is spontaneously broken. Both of 
these phenomena occur owing to quantum fluctuations. Our theorems cover a 
wide class of quantum lattice systems having not-too-long-range interactions. 

KEY WORDS:  Quantum fluctuations; ground states; symmetry breaking; 
uncertainty relation; clustering. 

1. I N T R O D U C T I O N  

It is well known that continuous symmetries cannot be spontaneously 
broken in one- and two-dimensional systems at nonzero temperatures 
if the interactions are short range. Since Mermin and WagneP l~ and 
Hohenberg t-'~ showed rigorous proofs, several papers have appeared 
proving the invariance of the state under a continuous transformationJ 3-8~ 
These arguments, however, work only at finite temperatures. 

Absence of symmetry breaking in the ground state of one-dimensional 
quantum systems has been a long-standing question. This problem was dis- 
cussed by using an extension of the Bogoliubov inequality ~9~ and using the 
uncertainty relation/~~ Takada ~9J argued for a relation between the 
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absence of long-range order and the dispersion form of the excitation 
spectrum, and thereby showed that, if the lowest excitation frequency has 
a gapless k-linear form, the ground state cannot show symmetry breaking. 
Pitaevskii and Stringari ~j~ proposed a zero-temperature analogue of the 
Bogoliubov inequality, using the uncertainty relation of quantum mechanics. 
They presented a method for showing the absence of breakdown of con- 
tinuous symmetry in the ground state. After that, Shastry ~ t  pointed out 
that one can complete the proof for the one-dimensional Heisenberg anti- 
ferromagnet by combining their method and the infrared bound given by 
Dyson et al. ~'2~ The method proposed by Pitaevskii and Stringari ~l~ can 
be successfully applied only when we have a rigorous upper bound of the 
susceptibility at the whole momentum space. It is, however, difficult to 
obtain upper bounds of the momentum-dependent susceptibility in general 
quantum systems. 

Another well-known theorem for short-range systems with continuous 
symmetry is the Nambu-Goldstone theorem, which states that there exist 
gapless elementary excitations whenever any continuous symmetry is spon- 
taneously broken. This theorem was also proved for lattice systems, t'3~ 
Furthermore, Martin ~7~ showed that some truncated correlation functions 
at finite temperatures have power-decay behavior slower than or equal 
to erl -t in three-dimensional systems if continuous symmetry is spon- 
taneously broken. 

In the present paper, we extend the method by Pitaevskii and 
Stringari,~ to~ using the technique developed by Martin, ~7~ and thereby show 
conditions for the ground state of quantum systems to be invariant under 
a continuous transformation. We obtain the following results on con- 
tinuous-symmetry breaking in ground states. 

1. In a one-dimensional system, if a certain uniform susceptibility is 
finite, the ground state has continuous symmetry, i.e., 

co(~zo(A))=co(A) (1) 

for any local observable A. Here co(-..) denotes the ground state and go 
denotes the continuous transformation under which the interactions of the 
Hamiltonian are invariant. (See Theorem 1.) 

2. In more-than-one-dimensional (d> 1) systems, if any continuous 
symmetry is spontaneously broken in the ground state as (d/dO) 
~o(cr0(A) )l 0 = o :~ 0 with a local observable A and if a certain uniform suscep- 
tibility is finite, the truncated two-point correlation function of A shows a 
power-decay slower than or equal to O( l/r d-  1). Here we denote the dimen- 
sionality of the system by d. (See Theorem 2.) 
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Both of these phenomena occur as a consequence of quantum fluctua- 
tions. In our discussion, we define the ground state by applying an 
infinitesimally small field. We derive these results using rigorous 
inequalities and assuming the clustering property of this ground state. 
(Note that this assumption is quite reasonable, though it cannot be verified 
within the presently available techniques in mathematical physics.) These 
theorems are applicable to a wide class of quantum lattice systems having 
not-too-long-range interactions and continuous symmetries. Quantum spin 
systems, lattice fermion systems, and hard-core Bose systems are included, 
for example. 

2. T H E O R E M S  A N D  P H Y S I C A L  C O N S E Q U E N C E S  

2.1. P re l im inar ies  

We first give some notations. We denote the d-dimensional lattice 
by 5 ~ which is taken as Z a. For each lattice point x ~ 50, there are the 
algebra d,. of operators and the finite-dimensional Hilbert space Jg,.. For 
any bounded subset A c 50, local operators which are defined on A 
generate the local algebra .-~..1 of observables and the Hilbert space is given 
by ~ ,  = @.,. ~ A H..,.. 

For simplicity, we present arguments for quantum systems with two- 
body interactions. We can easily extend the following arguments to models 
with more-than-two-body interactions. Let 50 be the translationally 
invariant lattice and H,~ be the Hamiltonian in the finite-volume lattice 
A c 50, which is given by 

H.~= ~ ~b(x, y) (2) 
x ,  y ~ A 

Here ~b(x, y) denotes the translationally invariant interaction defined on 
-~,. | J(,. with the norm limb(x, y)[[ = ~ ( x -  y). We restrict our discussion to 
models that have not-too-long-range interactions satisfying 

~. Ixl 2 ~ ( x )  < oo (3)  

and that have at least U( 1 )-continuous symmetry, i.e., 

[~b(x, y), Jo]  = 0  (4) 
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for any x, y e t2 and local subset f2 c S a. Here JQ denotes the generator of 
the (global) symmetry transformations of operators in ~r The continuous 
symmetry transformation is given by 

ao(A ) = exp(i0J , )  A exp( - iOJ,) (5) 

for any A ~ ~/~2. 
To define the ground state, we select a proper order parameter and 

then apply the corresponding symmetry-breaking field. Let us define the 
ground state in the form 

T r . . .  exp { - fl( H ,  - BOA)} 
co(...) = lira lira lim (6) 

s~o ATu" /sl.~. T r e x p { - f l ( H i - B O A )  } 

where OA denotes the order-parameter operator and B is the real-valued 
symmetry-breaking field. It is known that the limits are well defined by 
choosing suitable sequences of A and B. (See Appendix A of Ref. 14, for 
example.). 

We restrict our discussion to the case that the order-parameter 
operator has a sublattice-translational invariance. Hence the ground state 
defined by (6) has the following sublattice-translational invariance: 

co(A) =co(r.,.(A)) (7) 

for any x E ~ and A ~ ~r on a local subset s Here r.,. denotes the space 
translation by x and s denotes a set of sites in a sublattice. If we consider 
antiferromagnets on a bipartite lattice, for example, the order parameter is 
set as the staggered magnetization and s is one of two sublattices. In 
ordinary ferromagnets, the ground state has the full lattice-translational 
invariance and hence ~ = Sa. 

In the following discussion, we assume the clustering property of the 
state, 

(l) 
[ro(r.,.(A)B) -~o(r,.(A))co(B)l ~< O ~ (8) 

with 6 > 0 for sufficiently large Ixl and any A, B ~ ,.~,, on a local subset O. 
This property means that observations at two points separated far from 
one another do not affect each other. Note that this is a quite natural 
assumption. It is believed that, by selecting a proper order parameter, the 
state co(.. .  ) becomes a pure state, i.e., it has the clustering property. 

R e m a r k .  It is widely believed that any physically natural equi- 
librium state has the clustering property. In studies on finite systems, we 
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sometimes encounter states which do not have the cluster property. For 
example, consider the ground state of the three-dimensional Heisenberg 
antiferromagnet. It is shown that the ground state of finite-volume systems 
is invariant under the global spin rotation ~5' t6~ and it has a long-range 
order in the infinite-volume limitJ 17) Taking the infinite-volume limit of the 
ground state of finite systems, one can define a ground state that does not 
have the clustering property. However, as discussed in ref. 14, this sym- 
metric ground state is unphysical and only a mathematical object. It is 
believed that in the thermodynamic limit this state is decomposed into pure 
states and one of the pure states appears as a natural state in the real 
system.C ~8, 19) 

2.2. Main Theorems 

In this section we present our theorems. Physical consequences of the 
theorems will be discussed in Sections 2.3 and 2.4 and proofs are given in 
Section 2.5. 

The statement that the state co(..-) has continuous symmetry is 
equivalent to 

dco(ao(A)) o = o = 0  (9) 

for any A e d,~ on any subset A c L, a. We consider the transformation ao in 
which Jo  is given by J~2=~.,.~ar.,.(Jo) with a bounded self-adjoint 
operator Jo e-~o. In this case, we have 

d o=o  ~<o(cro(A)} =ico([J,,,A]) (IO) 

for any A E ~r and any subset A c ~L~'. 
Without loss of generality, we consider the operator A on the subset 

A--{.x-e ~~ Ixl ~<r}, where r is a finite constant. To discuss the quantity 
co( [JA, A ] ), we use the sublattice-translational invariance (7) and hence we 
have 

1 
CO([JA, A 3 ) =  i--0-~1~1 ,.~s og([J~, r, .(A)]) (11) 

for any A ~ d ~ ,  where s { x ~ :  Ixl ~<R} a n d / 2 =  {x ~ &a: [xil ~<Ro for 
i =  1 ..... d} with R o = R + r .  [-Though Eq. (11) holds by setting /2 as 



198 Momoi 

{xE~L,4': Ix[ ~< R + r } ,  we have taken /2 as the hypercubic lattice for con- 
venience in later discussions.] Bounding the absolute value of the right- 
hand side of (11) with the uncertainty relation and the Kennedy-Lieb-  
Shastry inequality ~ ~7) and estimating the R dependence of the upper bound, 
we obtain the following lemma. 

I . e mm a .  Let the interaction satisfy (3) and (4), and assume that the 
ground state (6) satisfies (7) and (8). Consider ~'a on the subset 
A = { x ~ s  [x]~<r}, where r is a finite constant, and let f2s={x~s 
[x[~<R} and f2={x~2~':[xi[~R o for i = 1  ..... d} with R o = R + r .  
Furthermore, define the uniform susceptibility of J by 

z j = l i m  2 i~ ~- ~T~'-~[ d2 {(o(J~Jn(ik))--(o2(ja)} >~0 (12) 

assuming existence of the limit, 2 where Jn(t) is the time-evolved operator 
of Ja. Then the right-hand side of (11) is bounded as 

: (o<a<d) 
i~-~l~.~nco([Jn, r.,.(A)]) ~O(R- ' lnR) .x /~ j  ( 6 = d )  (13) 

(a>d) 

for sufficiently large R and any A ~ ~ j .  

We will give a proof in Section 2.5. As shown in the proof, this lemma 
comes from the uncertainty relation of quantum mechanics. Hence 
inequality (13) can show purely quantum effects. In the following we 
discuss physical consequences of the bound in each dimension. It should be 
remarked that these results are applicable to various models on arbitrary 
lattices that have translation invariance. Selecting bonds of the non- 
vanishing interactions ~(x, y), we can define various lattices on Z'( The 
results depend only on the dimensionality d of the lattice. 

First, we discuss one-dimensional systems, in which ~q~ = Z. By taking 
the R ~ oo limit of (13), the above lemma shows conditions for the absence 
of continuous-symmetry breaking in one-dimensional systems. 

T h e o r e m  1. Let 2 '  be a one-dimensional lattice and let the interac- 
tion ~b(x, y) satisfy (3) and (4). Assume that the ground state (6) satisfies 
the properties (7) and (8). If the infinite-volume limit in the definition (12) 
of the uniform susceptibility exists and if this susceptibility XJ is not 

2 Mathematically speaking, existence of the limit in (12) may be nontrivial. It should be 
remarked that this definition of the uniform susceptibility is equivalent to the standard one 
used in may papers in physics. See Appendix. 
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diverging, the ground state (6) is invariant under the continuous trans- 
formation ao, i.e., 

d co(~o(A) ) 0=0 = 0  (14) 

for any A e ~ on any finite subset A. 

The physical meaning of this theorem is discussed in Section 2.3. An 
advantageous point of this theorem is that the results depend only on 
the "uniform" susceptibility, not on other momentum-dependent 
susceptibilities. The condition that the uniform susceptibility is finite (or 
vanishing) is physically important. (See examples in the next section.) We 
cannot improve the condition without further detailed properties of the 
model, since the uniform susceptibility is finite or diverging, depending on 
each model. 

Next we discuss two- and three-dimensional systems. For these 
systems we consider the case that the continuous symmetry is spon- 
taneously broken. Slight modifications of the lemma give the following 
bound for a truncated two-point correlation function. 

T h e o r e m  2. Let 5P be a more-than-one-dimensional ( d >  1) lattice, 
and let ~b(x, y) satisfy (3) and (4). Assume that the ground state (6) satisfies 
the conditions (7) and (8). If continuous symmetry is spontaneously 
broken in the ground state (6), i.e., co([JA,A])r with an operator 
A ~ "~'A on an arbitrary subset A c &o and if the infinite-volume limit in 
(12) exists and X j <  m, the truncated two-point correlation function of A 
shows slow clustering as 

( ' )  [~o(A*r,.(A)) --~o(A*) ~o(r,.(A))[ >t O ~ (15) 

for sufficiently large Ixl with x e s 

We discuss the meaning of this theorem in Section 2.4 and give a proof 
in Section 2.5. Under some conditions this theorem states that the trun- 
cated correlation function of A cannot show any exponential decay in the 
ordered ground state. This result hence corresponds to an extension of 
the Nambu-Goldstone theorem. This theorem shows the conditions for the 
existence of quantum fluctuations and shows strong correlation between 
the fluctuations. (Remember that in the classical model there is no fluctua- 
tion in the ground state and hence the truncated two-point correlation 
function vanishes.) The condition for the uniform susceptibility appears in 
the theorem again and it is important in this case as well. (See examples in 
Section 2.4.) 
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2.3. One-Dimensional Systems 

First we discuss one-dimensional systems, whose lattice is set as Z. 
Among the assumptions of Theorem 1, the finiteness of XJ is physically 
important. It determines whether the ground state shows symmetry 
breaking or not. To clarify the meaning of Theorem 1, we display three 
examples. 

Example 1. Spin SU(2) symmetry. Let us first consider the one- 
dimensional spin-S Heisenberg antiferromagnet on the lattice ~ (  = Z). The 
Hamiltonian in A c s is given by 

HA= ~ (STS):+S]Sf+S:~S ~) (16) 
( i, .iX �9 A 

where S~(o~=x, y,z)  denote the spin operators on the site i satisfying 
[S~, S{] = @ke~p~.S)' with $2=  S(S+ 1). The summation runs over all the 
nearest neighbor sites. As a generator of the U(1) rotation, we take 

JA = Z s f  (17) 

This model clearly satisfies conditions (3) and (4). Setting the order- 
parameter operator of the antiferromagnetism as 

or,= Y'. (-1) '&'  (18) 
i ~  A 

we define the ground state co(-..) by (6). By definition, the ground state 
satisfies the sublattice-translation invariance (7). In this model, the quan- 
tity ZJ is the uniform magnetic susceptibility of the ground state co(...). It 
has been proved in refs. 12 and 17 that ZJ is bounded from above by a 
finite constant for Heisenberg antiferromagnets on hypercubic lattices) 
Finally, we assume that co(-..) satisfies the clustering property. Under this 
assumption Theorem 1 hence states that the ground state co(..-) has spin- 
rotational symmetry. 

For the system whose uniform susceptibility is not diverging 
Theorem 1 states that quantum fluctuations suppress spin ordering even if 
some momentum-dependent susceptibility is diverging. The correlation of 
k = 0 is, however, special. Theorem 1 does not exclude the possibility of 

3 Though refs. 12 and 17 discussed only antiferromagnets without any magnetic field, their 
arguments can be easily extended to a Hamiltonian with staggered magnetic field, 
H.j-BOt, and hence we can show that their bound on tile susceptibility holds for this 
system as well. 
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ferromagnetism, since in ferromagnets the uniform transverse susceptibility, 
which is nothing but Z J, diverges. As is well known, the one-dimensional 
Heisenberg ferromagnet has a fully ordered ground state. Thus the spin 
long-range correlation with the zero momentum can survive quantum fluc- 
tuations. Furthermore, Theorem 1 says that ferrimagnetism can occur as 
well. Some models indeed show ferrimagnetic order even in a one-dimen- 
sional system, t'-~ In ferrimagnetism, antiferromagnetic long-range order 
coexists with ferromagnetic order. From the theorem we learn that this 
antiferromagnetic order can appear owing to the existence of ferromagnetic 
order. 

Example 2. Sp& 0(2) svmmeoT. Next we consider the one-dimen- 
sional spin-S XY ferromagnet, whose Hamiltonian is 

H = -  ~ (S;:S)+ S;Sf)  {19) 
( i , j )  e . l  

The summation runs over all nearest neighbor sites. This model is invariant 
under the 0(2) rotation, whose generator is J,, = ~ , S ~ .  This model is 
expected to have strong correlation at k = 0 .  We hence set the order 
parameter as O.~ = ~i~.~ S[,  thereby defining the ground state by (6). The 
Hamiltonian and the ground state clearly satisfy conditions (3), (4), and 
(7). Since this model has only 0(2) symmetry and may have weak S: 
correlation, situations are different from the ferromagnets in the above 
example. We expect ;O is not diverging in the XY model and hence, from 
Theorem 1, the ground state has 0(2) rotational invariance. 

Example 3. U(1)-gauge symmetry offermions. Let us consider the 
breakdown of the U(1)-gauge symmetry of fermions. (The Hilbert space of 
fermion systems is not a simple tensor product of the local Hilbert spaces 
and hence some modifications to the notations are needed. Furthermore, 
each observable in the algebra J a  should contain multiplets of an even 
number of fermion operators, so that [A, B] = 0  for any A eo~'A, and 
B E ~ j ,  with A, c~A,_=~3~. Thereby our theorems still work for fermion 
systems as well.) 

As an example of correlated lattice fermions, we consider the one- 
dimensional Hubbard model, whose Hamiltonian is given by 

n , : - ,  E E 
< i . j > ~ A  a =  T, l 

~j,~ci~) + U nil (c,~cj~+ ~ ",r -~, ~ (n, r +,7.) 
iE, ' l  i ~ A  

(2o1 

The summation of the hopping term runs over all the nearest neighbor 
sites. We denote the creation operator of the fermion at site i with spin a 

822/85/I-2-14 
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by c;* and the number operator of the fermion by n,-=. The generator of the 
gauge transformation is given by J,, = Y'.s~,~ (nit + n~,) and hence XJ is the 
uniform charge susceptibility or the compressibility. This model satisfies 
conditions (3) and (4). Under the assumption of the clustering property, 
Theorem 1 states for this model that, if the compressibility is finite, there 
is no breakdown of the U(1)-gauge symmetry. 

Here we mention the model proposed by Essler et al. ~2~ In their model 
the ground state has superconductivity even in a one-dimensional system. 
It should be noted that the compressibility is diverging in the ground state 
of their model, and hence Theorem 1 is not applicable to their model, 

2.4. Two- and Three-Dimensional Systems 

In this section we discuss two- and three-dimensional systems, whose 
lattice is taken as Z 2 or Z 3. To clarify the meaning of Theorem 2, let us 
consider two examples, 

Example 4. We again discuss the spin-symmetry breaking of the 
Heisenberg antiferromagnet (16). Here we take the lattice 2 '  as Z 2 or Z 3. 
We set the order-parameter operator as Qf=Z, .~ : fS ; : exp ( iq ' r )  with 
q = ( ~  ..... zt) and the generator of rotation as J.,~=~.r~,~S~. This model 
hence satisfies the conditions (3) and (4), and the ground state co(...) 
defined by (6) satisfies (7). The occurrence of symmetry breaking in co(---) 
has been proved for two-dimensional S>~ 1 models ~22'231 and for three- 
dimensional arbitrary-S models. ~7'23~ Existence of long-range order has 
also been proved for anisotropic Heisenberg antiferromagnets. ~24-26~ In 
these models, one thus has for the ground state 

co( [ J.l, , s.',. ] ) = - ico( s ",. ) ~ o (2:) 

Furthermore, the finiteness of ZJ is proved in refs. 12 and 17. (See also 
footnote 3 in the present paper.) Using these results and assuming the 
clustering property of co(..-), we find from Theorem 2 that the transverse- 
spin correlation shows slow clustering as 

(22) 

for 0, r e  4 ,  and for sufficiently large Irl. Note that co(S~')= 0 by definition 
of the ground state. Hence (22) shows that there are quantum fluctuations 
in the ground state and they are strongly correlated. Shastry ~'~ showed 
that the transverse-structure factor diverges as co(S],'S.'Z~.)~ 1 / Ik -q l  at 
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k - q  in the ground state with N~el order. This indicates that the trans- 
verse-correlation function decays as co (S6 'S~ ' )~ ( -1 ) r / [ r ]  a - j .  Thus this 
example shows that our bound (15) is optimal. 

It may be worth mentioning another Nambu-Goldstone-type theorem 
for the excitation spectrum of Heisenberg antiferromagnetsJ 27-29~ It states 
that the N~el-ordered ground state has a gapless excitation spectrum and 
the lowest frequency of excitations is bounded from above by a gapless 
k-linear form around k-~0 and q. These two Nambu-Goldstone-type 
theorems may be closely related to each other. 

Furthermore, we discuss the ferromagnetic Heisenberg model, in 
which ZJ is diverging, to clarify the significance of the condition on ZJ. The 
ground state of the ferromagnet can be written as a direct product of local 
spins and it does not fluctuate. Hence the truncated two-point correlation 
function is always vanishing. Thus the Heisenberg ferromagnet is a special 
model, which does not contain quantum fluctuations in the ground state. 
Our theorem successfully excludes this special case. 

Example 5. Finally we consider lattice fermion systems, e.g., the 
Hubbard model (20) on Z 2 or Z3, and consider the spontaneous 
breakdown of the U(1 )-gauge symmetry. As the order parameter, we take, 
for example, 

O , =  ~ O 2 =  ~ (c*Tc* ~ +c<c,T) (23) 
i E  ,,I i ~  , l  

One can take other types of order parameters as well. The generator of 
gauge transformation is given by J~=~2i~A (niT +ni l )  and hence Z., 
denotes the charge susceptibility. Assume that the ground state defined by 
(6) shows superconductivity and satisfies 

ro([ J,,, Off])=2ko(O~)4:0  (24) 

where O f  = io* r c)*t - icj~ Cir. For this system, Theorem 2 states that, if the 
compressibility is finite, we have 

( ' )  Ico(Off o7)1 >_- o (25) 

for sufficiently large [rl. 
It should be remarked that the Coulomb interaction does not satisfy 

condition (3) and hence Theorem 2 is not applicable to models that con- 
tain Coulomb interactions. Decay of correlation functions in these systems 
may be closely related to Anderson-Higgs phenomena and it is beyond the 
scope of this paper. 
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2.5. Proof  of T h e o r e m s  

In this section we give proofs of the Lemma and Theorems 1 and 2. 

Proof of Lemma. As in ref. 10, we use the following two inequalities; 
one is the uncertainty relation, I~~ 

I~o([ c, A ] )l ~- <~ co( { A C *, A C} ) co( { AA *, AA}) (26) 

for any A, Ce~ ' a  with AC=C-og(C)  and AA=A-co(A) ,  and the other 
is the Kennedy et al. ~7~ inequality, 

co( { AC*, AC} )~ <~ D(C) co( [ [ C*, Ha], C] ) (27) 

for any C e ~r Here Ha  denotes the Hamiltonian on I2 and D(C) denotes 
the Duhamel two-point function of C, 

D(C) =lims+o Ate'lim pT~-lim f~Id2{COA. B(C*C(i~))--COA. B(C*)COA. B(C)} (28) 

where 

COA. S('" ') = Tr[--- exp{ --fl( H A -- BOA)} ] 
Tr[exp{ --fl(H A -- BO,,)} ] 

(29) 

and 

C(t)=exp{it(HA-BO,,)} Cexp{ - i t (H , , -B OA)}  (30) 

Both inequalities (26) and (27) were first obtained for finite-volume 
systems. Taking the thermodynamic limit, one obtains these inequalities. 
Combining (26) and (27), we have 

[og([C,A])IZ<...{D(C)co([[C*,Ha],C])}'/2co({AA*,AA}) (31) 

for any A, Ce~r where AA=A--co(A). Setting A as Aa=[f2sJ - j  
~.,.~Qsr.,.(A) with A edA and C=Ja in (31), we obtain an upper bound 
o f ( l l ) .  

To estimate properly the R dependence of the right-hand side of (31), 
we use the smooth action ~5' 6~ of Ja.  We set the operator C as 

C= Jr= ~ f(x)J.,. (32) 
x E . ~  
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where f ( x ) =  1 for x e g2, and f ( x )~O as Ix[ ~ oo. Defining Xma x by 
Xm~x = max~ [x;[, we set the function f(x) in the form 

I l, Xma x < R o 

f ( x ) =  2-Xm~x/R o, Ro<~Xmax<~2Ro (33) 

(0 ,  2R o < X . . . .  

Hence the operator C(= J f) is defined on the subset C2'= {xeZ,  a: 
[xi[ ~<2R 0 for i =  1 ..... d}. Thus, we have 

lco([d~, A,~] )12= Io~([ Jr, A j ) I - "  

<~ { D(J/) co([ [Jr ,  Ha,] ,  Jr] )} ~/2 co({ AA*,  AA~} ) (34) 

for any A e d A ,  where A A ~ =  IO~l-tZ.,.~r,.(A)-co(A). From now, we 
discuss the right-hand side of (34) estimating the R dependence in the 
large-R limit. 

Let us first discuss D(J/). The operator J / c a n  be decomposed as 

d,. = Jo~,,) (35) 
J / = . . o  ,,=o .,-~.,, 

where C2(n) denotes the hypercubic lattice defined by 

I2(n)= {xeAa:  Ix,-[ ~<Ro+n for i =  1 ..... d} (36) 

Now we consider the finite-volume lattice A [ =12(Ro)] and introduce the 
function 

DA.s(A, C ) =  lim dA{coA, s(A*C(i2))--coA, s(A*) coA. s(C)} (37) 

for A, C e  ~r where C(t) is the time-evolved operator of C, given in (30). 
This function clearly satisfies DA. s(A, A)>1 0 and the linearity 

DA.B(A, aCl +bC2) =aDA, s(A, C1) +bDA. B(A, C2) 

for any a, b e • and A, C1, C2 e dA. We hence regard DA. s(A, C) as the 
inner product. Inserting J1 into DA, s, we obtain 

DA. s(Jf, Jr) 
I R 0 - 1  R 0 - t  

=--if5 ~ ~ DA B(Jc2(n),J~Im~) 
R~ . = o  , .=o " 



206 Momoi  

1 R ~  R ~  

Z E s,,,.,))l R~ B(Jo~,,~, 
n ~ O  t / / = O  

1 R 0 -  1 R o -  I 

<~-~R?) ~ ~', {DA, 8(Jc2t,,~, Ja,,,~)DA, B(JQ,,,,~,J~,,,,~)} ~/2 (38) 
n ~ O  n t = O  

where we have used the Schwarz inequality. Taking the thermodynamic 
limit of the system, we have 

lim lim D,La(A, A) =D(A) 
B,[O AT:J" 

and hence from (38) we obtain 

~< 1 m - -  1 R o  - -  1 

D(Jf) -~-~ ~ ~', {D(Ja<,,~) D(Jat,,u)} ~/2 (39) 
R~ ,,=o ,,,=o 

The function D(A) can be written as 

D(A) = 2  d2 {co(AA(i2))-co2(A)} 

for an arbitrary self-adjoint operator A, where A(i2) denotes the time- 
evolved operator of A. Hence, in the large-R limit, D(Ja~,,)) relates to the 
uniform susceptibility in the form 

1 
Xs= lim (40) Rot .~, ~ D(JQ<,,)) 

(See also Appendix.) For sufficiently large R, using IO(.)1 = (2Ro+2n+ 1 )a 
and R o = R + r ,  we have 

D(Ja~,,~) = {(2Ro+2n + I)d+o(Rd)} Zj<~4d(R+r)azj (41) 

and hence, from (39), we obtain 

D(Jt.) <~ 4a(R + r)a zs (42) 

Next, we discuss other parts in the right-hand side of (34). Since 
calculations of co({AA*+, AAQ+}) have been published in ref. 7, we adopt 
the results and do not repeat the calculations here. Thereby we have an 
upper bound 

( O(R-~), 0 < 6 < d  

co({AA*,AAa+})<~ ~O(R-dlnR), 6=d (43) 

{.O( R-d), g > d 
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where we have used the clustering property (8). Calculations of 
co([[jr, H] , j c  ]) are also given in ref. 7. Though the definition of the 
smooth function f (x )  is different from ours, the derivations and results of 
ref. 7 still hold only by changing the spherical supports to hypercubic ones. 
Thus we have 

CO( [ [ Jf, H],  J r |  ) ~< M 11Jo II ~- Ra- 2 ~ Ixl-" q4x) (44) 
x 

where M is a positive finite constant. If we use JQ instead of ]c in (44), 
co([[Jo, H] ,Ja])  can be bounded by the form R J-~. Thus in (44) the 
double commutator is better estimated due to the smooth action. Inserting 
(42)-(44) into (34), we obtain (13). | 

Proof of Theorem 1. Setting d =  1 in the Lemma, taking the R ~ 
limit, and using (10) and ( 11 ), one obtairis (14) for any ~ > 0, i fxs < ~ .  | 

Proof of Theorem 2. Consider the case that all hypotheses of this 
theorem are satisfied and furthermore assume that the truncated two-point 
correlation function of A decays faster than 1/Ixl a-~, i.e., 

lco(A*r.,.(A))-co(A*) co(r,(A)) I ~<o (45) 

Here o(Ixl-'~+ 1) denotes a number that is of lower order than Ixl-a+~ 
Using (45) instead of the clustering property (8), one can obtain 

co( { AA~,  zJAos} ) ~< o(R- ' /+  1) (46) 

instead of (43). Thus, slightly modifying the proof of the Lemma, we obtain 

~ ~ co([J~,r , . (A)])"-<~o(R ~ (47) 
.x" E Qs 

where o(R ~ denotes a number that vanishes in the R ~ oe limit. (Remem- 
ber that we are under the condition Z < oo.) In the R ~  oo limit, (47) shows 
CO([JA, A ] ) =  0. This clearly contradicts the condition co([JA, A ] ) r  and 
hence, by contradiction, we arrive at (15). I 

APPENDIX.  DEFINITIONS OF THE UNIFORM SUSCEPTIBILITY 

We comment on the definition of the uniform susceptibility (12). In 
the literature, the susceptibility is usually defined by 

X1=lim lim 1--~-D A B(J~I) (AI) 
8 ~ o  Ar~," I ' 
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where 

f; D~,.e(A) = lim d2{co~.B(A*A(i2))-co~ s(A*)co~. B(A) } 
P t ~ ' 

(A2) 

with 

Tr[ . . .  exp{ --fl( H A -- BO,,) } ] 
co(~. s (  ) -  Tr[exp{ --fl(H , -BOA)}  ] (A3) 

For an arbitrary self-adjoint operator A ~ ,  DA.B(A) can be written as 

DA, B(A) = 2  d2{COPA=~'~(AA(i2))-m~-~(A) r (A4) 

In (A1), the limits are taken so that the state co~, s('" ") converges. Here we 
assume that the limits of the quantity in (A1) exist and that Xj is well 
defined. Our definition of the uniform susceptibility is, however, different 
from (A1). In this paper, we have defined the uniform susceptibility as 

Z~-lim lim lim 1 DA.a(Jo) 
~TU' BIO ATu'~ 

= lim 2_~ [~- d2{~o(JaJa(i2)) -co(Ja) co(Ja)} 
ate,' l~l Jo 

follows: 

(AS) 

taking suitable subsequences of A and B, where E2 is set as the hypercubic 
subsets {.x-e ~ :  [.x'il ~<Ro for i =  1 ..... d} and 

co(...) = lim lim lim co~, 8(" ") 
B I O  A T e :  / JT,~  

(A6) 

In this Appendix, we shall show that these two definitions are equivalent 
and hence ZJ converges to Xj. 

Consider a finite subset A (~12) and a function g(x) defined by 

1, xsl-2 
g ( x ) =  0, x~12 (A7) 

Then we have Ja  = 37x~A g(x) J,. and 

1 
IO-~1 D'' B( J'~) -It~l IAI D.~,. B g - ,Jk  

- Ig211 IAI1 ~ [g~l-' DA. a(Jk) (AS) 
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where Jk = IAI--1/2 ~.'c E .4 J.,,- e xp (  i k x  ) and g k = F..,. ~ A g( x ) e xp( ikx ). In the 
thermodynamic limit, (A8) can be written as 

lim lim 1 = 1 _ ~  
d ,tk 

sio Ate' -~[ DA, s(Je) It?l ~lk, l<,~(2Zr) 'tl gkl'-Xj(k) (A9) 

where 

Xs(k) =l im lim DA, B(Jk-) (AI0) 
BJ. 0 .4T-~ 

The function I~l-' Igk[ 2 has the following two properties: 

f dak 1 
Ik, I <-,~ (2r0 d In~ I gk lZ  = 1 

and 

(Al l )  

. 1 12 = l { O s i n k i ( R o + l / 2 ) ~ 2  
l'm_ e ~ l  g,  lim )a ~ ~ j 

mT~- (2R0+ 1 i 

= 0  (A.12) 

for any k satisfying k4:0  and Ik;I ~<~r. Hence it converges to the Dirac 
delta function, 

1 
lim - -  Igkl-" = (2n:)d ~(k) (A13) 

for Ik, I <<.Tr. Inserting (A13) into (A9) and using X j ( k = O ) = X s ,  we thus 
find that XJ = Xj. 
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